
July 26, 2021

ENECUUM
CRYPTOGRAPHIC

LIBRARY
AUDIT

TABLE OF
CONTENTS

INTRODUCTION TO THE AUDIT

 General provisions

 Scope of audit

SECURITY ASSESSMENT PRINCIPLES

 Classification of issues

 Security assessment methodology

DETECTED ISSUES

 Critical

1. Returning nullptr instead of class instance. Possible remote-

 executed SEGFAULT

 Major

1. Uncleaned private key memory

2. Potential temporary variable memory leak (suggestion provided

by the Client)

 Warning

1. Redundant (or potentially dangerous) random number generator

seeding

2. Wrong subgroup order

3. Redundant self-assignment

4. Elliptic curve wrapper generator element memory leak

5. Elliptic curve data memory leak

6. String output memory leak (suggestion provided by the Client)

7. Tests memory leak (suggestion provided by the Client)

8. Low-memory and high-loaded environments potential memory

allocation issue (suggestion provided by the Client)

 Comments

1. Passing function arguments by value

2. Comments revealing sensitive data

3. Function arguments const specifier (suggestion provided by

the Client)

4. Explicit pointer null-ification (suggestion provided by the

Client)

CONCLUSION AND RESULTS

ABOUT MIXBYTES

DISCLAIMER

... 3

... 3

... 3

.. 4

... 4

.. 4

... 5

... 5

... 5

.. 6

..................................... 6

.. 8

... 8

... 8

... 9

.. 9

............ 10

................................. 10

... 11

........... 11

............... 12

.. 13

............................. 13

............................... 13

.. 13

...................................... 13

... 15

... 16

... 16

2

01 INTRODUCTION TO

THE AUDIT

General Provisions

Enecuum is a blockchain mobile network for decentralized applications. It was

created as a decentralized ecosystem to be able to bring the blockchain and

cryptocurrencies to the real mainstream, involving a crowd with regular mobile

and desktop devices into the blockchain network. Enecuum allows each

smartphone owner to be a part of our global network.

MixBytes team (the Contractor) asked team's Lead Auditor Mikhail Komarov (the

Auditor) to audit Enecuum Blockchain's (the Client) cryptography library.

Scope of audit

https://github.com/Enecuum/lib-crypto

3

Commit: 52f764fda3cbba7deef9bdc7e6a8938135ae0cec

https://github.com/Enecuum/lib-crypto
https://mixbytes.io/
https://enecuum.com/

02 SECURITY ASSESSMENT

PRINCIPLES

Classification of Issues

CRITICAL: Bugs and vulnerabilities that enable remote code execution attack

(leads to making the sensitive data accesible by remote users) or local some

kind of priveledge-escalation (paves the road to remote users to become local

ones), segmentation failures or non-zero code termination within the usecases

considered by the Client as most common or most important ones.

MAJOR: Bugs and vulnerabilities that enable local private memory contents

leakage, making sensitive data available to the same physical machine users.

WARNINGS: Bugs that can break the intended algorithm logic or enable

a DoS attack.

COMMENTS: Various issues and recommendations.

Security Assessment Methodology

The audit was performed with double redundancy by two auditors.

Stages of the audit were as follows:

Initial check. Used for the time required estimation.

Manual check by the cryptography implementation practitioner.

Manual check by the theoretic research practitioner.

Mutual results check.

Discussion and merge of independent audit results.

Report execution.

4

Since the reviewed library consists of two parts - C++ library and NodeJS

wrapper, these parts were reviewed separately and as a whole in the end.

03 DETECTED

ISSUES

CRITICAL

5

1. Returning nullptr instead of class instance. Possible remote-executed
SEGFAULT.

Description

This issue is about incorrect OpenSSL error core handling.

OpenSSL's BN_* -family functions return error codes as integers

(https://linux.die.net/man/3/bn_add). For all functions, 1 is returned for

success, 0 on error. The return value should always be checked (e.g.,

if (!BN_add(r,a,b)) goto err;).

The particular BigNumber class (BigNumber.h#L10) uses these functions as

the way to perform multiprecision arithmetics operations (crypto.cpp#L43 ,

crypto.cpp#L26 , crypto.cpp#L19 , crypto.cpp#L12) . But in case one of

BN_* -family function fails, error-handling case returns nullptr inside

the class' operator+ () / operator*() / operator-() functions, instead

of returning the instance of BigNumber class. This means every operator+()

/ operator*() / operator-() usage will result in further BigNumber class

instance undefined behavior (for example here: crypto.cpp#L146 and here:

crypto.cpp#L145). This often leads to SEGFAULT.

The situation got even worse, when we realized this wrapper (with it's

class operators) is being commonly used among the C++ to NodeJS interface

(addon.cc#L210 , addon.cc#L200).

This means using this wrapper from NodeJS (which interface is available

to remote user) with some incorrect (e.g. too big or incorrectly formatted)

number would result in error in one of BN_* -family functions, which would

result in undefined behavior because of incorrect error code handling,

which would result in SEGFAULT.

Considering NodeJS architecture supposes same code usage at both sides

(backend and frontend), such a crash can result in not only crashing

locally-executed client, but a remote-executed server.

https://github.com/enecuum/enecuum-crypto-audit/blob/master/crypto/BigNumber.h#L10
https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/crypto/crypto.cpp#L43
https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/crypto/crypto.cpp#L26
https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/crypto/crypto.cpp#L19
https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/crypto/crypto.cpp#L12
https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/crypto/crypto.cpp#L146
https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/crypto/crypto.cpp#L145
https://github.com/enecuum/enecuum-crypto-audit/blob/master/node-addon/src/addon.cc#L210
https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/crypto/crypto.cpp#L145

Status

Fixed with error handlers append.

6

MAJOR

Recommendation

The very particular recommendation about fixing this issue is to change

error-handling return values in here: crypto.cpp#L46 , crypto.cpp#L29 ,

crypto.cpp#L20 , crypto.cpp#L13 , crypto.cpp#L77 to default-initialized

BigNumber instance. The overall (fix once and for all) recommendation

about this (and one more following major issue) is to replace BigNumber

wrapper usage with plain OpenSSL's BIGNUM pointer usage.

1. Uncleaned private key memory.

Description

This vulnerability is quite a complex one.

BigNumber.cpp#L62

This particular line defines the commented-out OpenSSL's BN_free(bn);

function commonly used for cleaning out memory used for the particular

OpenSSL's multiprecision number. It is a crucial thing to leave as less

crucial data in the RAM as possible to avoid side-channel or timing

attacks. BigNumber class is a wrapper built ontop of OpenSSL's BIGNUM

and it contains a pointer to the actual data-holding structure in here:

BigNumber.h#L23. This pointer gets initialized with multiprecision number

data storage (or copied) in several places (BigNumber.cpp#L13 ,

BigNumber.cpp#L17 , BigNumber.cpp#L8), but never gets cleaned out. This

results in memory leakage, leaving the private key available in RAM even

after the binary using the library being reviewed was terminated. This

particular RAM page piece becomes available for allocation for every

particular OS user or (in case the attacker really want to mess with this)

every particular physical machine user.

Meanwhile such a wrapper class is being used among the library as well as

in critical place for managing private keys.

crypto.cpp#L129

This particular line begins definition of a function intended to perform

Shamir scheme keys generation. It's arguments include initial secret value

to be shared with the scheme (secretM). This argument gets passed into the

function by value. This means every content of the structure representing

https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/crypto/crypto.cpp#L46
https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/crypto/crypto.cpp#L29
https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/crypto/crypto.cpp#L20
https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/crypto/crypto.cpp#L13
https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/crypto/crypto.cpp#L77
https://github.com/enecuum/enecuum-crypto-audit/blob/master/crypto/BigNumber.cpp#L62
https://github.com/enecuum/enecuum-crypto-audit/blob/master/crypto/BigNumber.h#L23
https://github.com/enecuum/enecuum-crypto-audit/blob/master/crypto/BigNumber.cpp#L13
https://github.com/enecuum/enecuum-crypto-audit/blob/master/crypto/BigNumber.cpp#L17
https://github.com/enecuum/enecuum-crypto-audit/blob/master/crypto/BigNumber.cpp#L8
https://github.com/enecuum/enecuum-crypto-audit/blob/master/crypto/crypto.cpp#L129

Status

7

this argument gets copied into the function argument stack. This includes the

BIGNUM pointer defined in here: BigNumber.h#L23. That one, which never gets

cleaned out.

Every usage of this wrapper (addon.cc#L20 , addon.cc#L24 , addon.cc#L31 ,

crypto.cpp#L27 , crypto.cpp#L44 , crypto.cpp#L70 , crypto.cpp#L78 ,

crypto.cpp#L85) leaves the uncleaned data in the RAM available to any willing

user of the particular physical machine to retrieve it.

Recommendation

Since BigNumber wrapper is being used all over the library, the actual issue

becomes quite a complex one. Every particular usage of this wrapper (in case

is allocates more memory) in every function induces memory leak.

The attempt and intention of a developer to make things right (correctly

deallocate and zeroize the memory BIGNUM pointer points to every time the

BigNumber wrapper instance gets destroyed) was spotted in here:

BigNumber.cpp#L62, but according to what the BigNumber wrapper is

(architecturally speaking, it is a pointerholder), deallocating the memory

every time BigNumber object gets destroyed would destroy all the other

BigNumber wrapper instances functionality (several wrapper instances are

using the same OpenSSL's BIGNUM pointer, pointing to the same memory piece).

Such an architectural decision induced the necessity to track every

particular BIGNUM pointer allocations and clean them out only in case there

are no BigNumber wrappers using that. It is hard. So it was easier for the

developer just to comment-out BN_free function and leave the data uncleaned.

The general recommendation about such a complex issue is not to fix every

particular place BIGNUM pointer stays uncleaned, but to get rid of BigNumber

wrapper and simply use the raw BIGNUM pointer. This would require library

refactoring, but this is the right way to avoid multiple memory leaks.

Fixed with duplicating BIGNUM instances every time BigNumber is copied (e.g.
BigNumber.cpp#L10) along with freeing them every time an instance gets
 destructed.

https://github.com/enecuum/enecuum-crypto-audit/blob/master/crypto/BigNumber.h#L23
https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/node-addon/src/addon.cc#L20
https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/node-addon/src/addon.cc#L24
https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/node-addon/src/addon.cc#L31
https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/crypto/crypto.cpp#L27
https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/crypto/crypto.cpp#L44
https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/crypto/crypto.cpp#L70
https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/crypto/crypto.cpp#L78
https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/crypto/crypto.cpp#L85
https://github.com/enecuum/enecuum-crypto-audit/blob/master/crypto/BigNumber.cpp#L62

Status

Description

This issue is about potential memory leak containing sensitive data induced

by the buff temporary variable within the keyRecovery function in crypto.cpp .

According to the client's suggestion it leads to sensitive-contents memory

leak with buff variable never being properly freed and zeroized.

Recommendation

Contractor agress that this particular memory leak was present, and, no

matter its exploitaton would be very hard, it should be elliminated.

The fix suggested by the client (introducing EC_POINT_free(buff)) is correct.

Fixed

2. Potential temporary variable memory leak (suggestion provided by the Client).

8

WARNINGS

1. Redundant (or potentially dangerous) random number generator seeding.

Description

This warning is about seeding the unsecure random (luckily redundant for

now) with the same value every time.

The particular seeding is being performed in here: crypto.cpp#L117 . srand()

function seeds the embedded libc unsecure (https://linux.die.net/man/3/srand)

random generator which is never should be used for cryptographically secure

random numbers generation.

This particular line, it seems, was used for seeding random number generator

for Shamir scheme polynomial coefficients generation.

Luckily, the developer moved to the OpenSSL's random generator

implementation (BN_rand_range) in here: crypto.cpp#L218. So, the problem

was mostly solved.

https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/crypto/crypto.cpp#L117
https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/crypto/crypto.cpp#L218
https://linux.die.net/man/3/srand

9

Recommendation

Since this issue is mostly a warning, we recommend the developer pay more

attention to random generation across the C++ library, recheck every usage

case, and remove redundant random seed generator to remove any newcoming

reviewer doubts about the developer understanding.

Status

Fixed with additional random generation correctness checks implemented
(e.g. crypto.cpp#L333).

2. Wrong subgroup order.

Description

This warning is about G1 group suborder being hardcoded with one bit missing.

The particular group suborder is being hardcoded in here: crypto.cpp#L270

as binary string "011011". Actual group suborder equals "91" which is

"1011011" in binary.

Recommendation

This particular issue gets handled in here: crypto.cpp#L248, but the group

suborder is still being defined wrong.

Status

Fixed in crypto.cpp#L410

3. Redundant self-assignment.

Description

This warning is about unnecessary assignment of the class instance object

to itself in here: ellipticCurve.cpp#L261.

We see no real necessity for this line.

Recommendation

To remove this redundant assignment?

Status

Fixed with the redundant assignment removed.

https://github.com/enecuum/enecuum-crypto-audit/blob/5fd853bef0d1cd934cadfc8af3ea1d4d972a2755/crypto/crypto.cpp#L270
https://github.com/enecuum/enecuum-crypto-audit/blob/master/crypto/crypto.cpp#L248
https://github.com/enecuum/enecuum-crypto-audit/blob/master/crypto/ellipticCurve.cpp#L261

Pointer to the EC_POINT gets allocated, but never gets released properly.

This induces memory leak.

Recommendation

This particular issue does not lead to any particular damage, but it

increases memory consumption and leaves it polluted. Deallocation with

EC_POINT_free(G) in Curve class destructor could make things better.

4. Elliptic curve wrapper generator element memory leak.

Description

This one is a minor one in here: Curve.h#L22.

10

5. Elliptic Curve Data Memory Leak.

Description

This one is pretty much similar to the issue about non-deallocated BIGNUM

pointer in BigNumber wrapper. Mostly an architectural one in here: Curve.h#L21.

But, in spite of the issue with non-deallocated BIGNUM pointer, this one

is pretty much harmless. Elliptic curve params are not that sensitive in

terms of security to be concerned about them being left in the RAM. But,

still, this is a memory leak. Pointer to the EC_GROUP gets allocated, but

never gets released properly.

Recommendation

This particular issue does not lead to any particular damage, but it

increases memory consumption and leaves it polluted. Deallocation with

EC_GROUP_free(curve) in Curve class destructor could make things better.

Status

Fixed with Curve.cpp#L61

Status

Fixed with Curve.cpp#L62

https://github.com/enecuum/enecuum-crypto-audit/blob/master/crypto/Curve.h#L22
https://github.com/enecuum/enecuum-crypto-audit/blob/master/crypto/Curve.h#L21

Description

This warning is about potential memory leak induced by BigNumber class string

output formatting functions toHexString , toDecString and by decimal

conversion function decimal in BigNumber.cpp .

According to the client's suggestion it leads to the memory leak (according

to these functions' purpose, preparing contents for the output cannot lead

to unintentional private value reveal), so this has to be handled with

OPENSSL_free call.

Recommendation

Contractor agress that the less memory leaks are present - the better it is,

but for these particular cases using regular free from stdlib.h with char *

-typed arguments would be enough.

6. String output memory leak (suggestion provided by the Client).

Description

This warning is about potential memory leak induced by the absence of free

or OPENSSL_free function calls for variables ec , proj , secret in file main.cpp .

According to the client's suggestion it leads to non-critical memory leak

(according to this file purpose of being a test one).

Recommendation

Contractor agress that the memory leak was present and the suggested fix

(with applying EC_POINT_free(secret) and delete ec; ec = nullptr;) is correct.

7. Tests memory leak (suggestion provided by the Client).

11

Status

Fixed

Status

Fixed

Description

This warning is about potentially incorrect memory allocation done within

the operator% and other functions in crypto.cpp . In case the execution is

being performed within extremely low free RAM environments (less than

sizeof(int) bytes) or within extremely high-loaded environments, the absence

of explicit handleError(NO_MEMORY) checks after BN_CTX_new() and BN_new() were

called could lead to the crash.

According to the client's suggestion it could lead to the execution failure

in case the environment's free virtual memory was exausted.

Recommendation

Contractor agress that the issue is present in case the execution is being

done within extremely restricted environments. But, since execution within

the environment restricted that much is not possible (according to massive

heap allocations are present, so embedded environments execution is not

practically possible), this issue is classified as a "Warning of an

extremely low probability".

The fix suggested by the client, though, is correct.

8. Low-memory and high-loaded environments potential memory allocation issue
(suggestion provided by the Client).

12

Status

Fixed

Description

Most of C++ library part is implemented with std::string and std::vector -typed

COMMENT

1. Passing function arguments by value.

This comment is about index.js , which explicitly logs literally everything

function arguments being passed by value. This has a performance and

security-related influence because every argument passed by value is being

copied into the function argument stack, which populates sensitive data

copies in the RAM.

Recommendation

The C++ way of passing arguments without populating data copies is to pass

them by const reference. So to avoid populating sensitive data copies in

RAM we recommend using this way.

Status

Fixed with l-value references and pointers usage (e.g. in here:
BigNumber.cpp#L32).

2. Comments revealing sensitive data.

Description

Status

Contractor agrees on this might help to avoid the unintentional developer-
 issued pointer modifications, but such a suggestion however cannot be qualified
 in any other way than a "Comment".

absence of const specifier within the function arguments. According to the

client suggestion it is supposed to protect from unintentional pointer

management issues.

happening. Including secret keys. Is it really required in production?

Status

Not an issue (just comments anyway)

3. Function arguments const specifier (suggestion provided by the Client).

Description

This comment is about potential further development issues related to the

13

4. Explicit pointer null-ification (suggestion provided by the Client).

Description

This comment is about necessity to explicitly set all the pointer-alike

variables to nullptr (or NULL) to maintain nullptr comparisons correct

(using those as unintialized value comparisons).

According to the client suggestion it is supposed to protect from memory

management issues (like calling OPENSSL_free with an already free-d

pointer as an argument).

Status

Contractor agrees on this might help with developer-induced memory
 mismanagement. However such a suggestion cannot be qualified in any other
 way than a "Comment".

14

04 CONCLUSION

AND RESULTS

The system reviewed contains two parts: C++ library and NodeJS wrapper. They

were reviewed separately and as a whole.

The security and reliability of the C++ part was rated "High". One critical

and one major flaws were found and fixed. Several warnings were given about

particular pieces of code and architecture decisions. All of the warnings

given were fixed.

The security and reliability of the NodeJS part (excluding NAPI wrapper - it

is related to C++ part) was rated "High". No major flaws were spotted.

15

Level Amount

CRITICAL 1

MAJOR 2

WARNING 8

COMMENT 4

 Findings list:

About MixBytes

MixBytes is a team of blockchain developers, auditors and analysts keen on

decentralized systems. We build open-source solutions, smart contracts and

blockchain protocols, perform security audits, work on benchmarking and

software testing solutions, do research and tech consultancy.

Contacts

https://github.com/mixbytes/audits_public

https://mixbytes.io/

hello@mixbytes.io

https://t.me/MixBytes

Disclaimer

The audit makes no statements or warranties about utility of the code, safety

of the code, suitability of the business model, investment advice,

endorsement of the platform or its products, regulatory regime for the

business model, or any other statements about fitness of the contracts to

purpose, or their bug free status. The audit documentation is for discussion

purposes only. The information presented in this report is confidential and

privileged. If you are reading this report, you agree to keep it confidential,

not to copy, disclose or disseminate without the agreement of Aave. If you are

not the intended recipient(s) of this document, please note that any

disclosure, copying or dissemination of its content is strictly forbidden.

16

	Blank Page
	111.pdf
	Blank Page

